
 

115-1 

A Short Note on Why Geostatisticians Use the Variogram 
 

Jason A. McLennan and Clayton V. Deutsch 

 

Centre for Computational Geostatistics 
Department of Civil and Environmental Engineering 

University of Alberta 

Covariances and correlations were used before the variogram in spatial statistics literature.  
Kriging and simulation proceeds with the covariance counterpart to variogram models.  
Nevertheless, the pioneers of Geostatistics preferred the variogram.  This short note provides a 
brief explanation in terms of robustness with respect to trends.  

Random Function Formalism 

Consider the random function (RF) Z(u) that consists of the set of random variables (RVs) {Z(ul), 
for all ul ∈ D}.  The RF is commonly assumed multivariate Gaussian after a univariate Gaussian 
transformation of the Z(u) variable.  The parameters of the multivariate distribution are inferred 
from the available sample data z(us), s = 1, …, n.  At an unsampled location u0, the conditional 
distribution is normal with mean and variance equal to the simple kriging estimate z*SK(u0) and 
variance σ2

SK(u0).  The simple kriging estimate is a weighted linear combination of the 
surrounding n sample data: 
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The weights λ(us) that minimize the expected error variance of the estimate are given by the 
following system of equations: 
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And the minimum error variance or kriging variance is: 
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The covariances CZ(us’ – us) and CZ(us – u0), or just CZ(h) where h is a lag vector, are then 
required to solve the kriging equations and establish the local u0 distribution of uncertainty from 
which simulation is performed. In order to calculate CZ(h), it is actually the variogram function 
γZ(h) that is calculated, interpreted, and modeled. γZ(h) is calculated from all N(h) pairs of 
scattered sample data (z(us), z(us + h)) approximately separated by the lag h: 
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An assumption of second-order stationarity then allows the calculation of CZ(h) through: 
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The kriging equations can then be solved and simulation can follow. 

Why the Variogram? 

Like the variogram, CZ(h) is calculated from all pairs of scattered sample data (z(us), z(us + h)) 
approximately separated by the lag vector h: 
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where the m-h and m-h are the means of the N(h) z(us) tail and N(h) z(us + h) head values, 
respectively. Notice the CZ(h) covariance function involves and is sensitive to the mean while the 
variogram acts as a filter on the mean m.  This is the most important reason why the variogram 
(4) is used over the covariance (6) to quantify and model spatial correlation for estimation [1].  
This property of the variogram is desirable in geostatistical applications where a decision of 
second-order stationarity is implied for an inherently non-stationary geological RF Z(u). 

A small 2D example is set up to see how the variogram effectively filters the mean from a non-
stationary field. Figure 1 shows the construction of a non-stationary porosity RF Z(u) over a 100 
x 100m field. The porosity residuals (left) are unconditionally simulated using a spherical 
variogram with zero nugget effect and 20m isotropic range. The locally varying porosity model 
(middle) is a linear increasing function of the Y coordinate vector. The porosity variable is 
constructed by adding the mean and residual models. Some sample data are then extracted from 
the resulting porosity field at a 10m spacing for the subsequent calculation of spatial correlation. 

Figure 2 shows the variogram and covariance functions using relations (4) and (6) in both the X 
(yellow) and Y (red) direction. Notice for relatively small h up to approximately one-third of the 
range, the variogram in both the X and Y direction is virtually the same. This shows that γZ(h) is a 
filter on the short scale locally varying mean. In contrast, the covariance is significantly different 
at both the short and longer scales showing its sensitivity to the locally varying drift. The Y 
direction in particular shows more spatial continuity than the X direction. 

Conclusion 

The variogram is considered more robust in the presence of trends and departures from 
stationarity since it filters non-stationary or locally varying means. The covariance on the other 
hand is sensitive to the mean. The relatively robust virtue of the variogram is the reason for its 
popularity.  
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Figure 1: The construction of a non-stationary porosity random function showing the residuals 
(left), locally varying mean (middle), and resulting porosity variable (right). The dark circles 
represent sample data locations. 
 
 
 

X  AND Y  VARIOGRAM CALCULATIONS

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0 5 10 15 20 25 30 35 40 45 50 55

LAG VECTOR [h]

V
A

R
IO

G
R

A
M 

A
N

D
 C

O
VA

R
IA

N
C

E

Y VARIO GRAM
Y CO VARIANCE
X VARIO GRAM

X CO VARIANCE
SILL

 
Figure 2: The X and Y direction experimental variograms for the porosity sample data set 
constructed in Figure 1. 


